This commit is contained in:
2021-11-14 14:32:08 +08:00
parent f75ad8bedd
commit b0f6120151
152 changed files with 22219 additions and 8 deletions

192
content/post/ch-search.md Normal file
View File

@@ -0,0 +1,192 @@
---
title: "ClickHouse 数据查询"
date: 2020-10-08T19:27:00+08:00
lastmod: 2020-10-08T22:17:00+08:00
tags: []
categories: ["clickhouse"]
---
# 查询注意
- **避免使用 SELECT * 查询**
# WITH
- **WITH 子句只能返回一行数据**
- 定义变量
```sql
WITH 10 AS var_name SELECT ...
```
- 调用函数
```sql
WITH SUM(column_name) AS with_name SELECT ...
```
- 定义子查询
```sql
WITH (
SELECT ...
) AS with_name
SELECt ...
```
- WITH 子句可在子查询中嵌套使用
# FROM
- 支持表、表函数和子查询
- 可用 FINAL 修饰以强制合并,会降低性能,应尽量避免使用
# SAMPLE
- 返回采样数据,减少查询负载,适用于近似查询
- 只能用于 MergeTree 系列引擎表,且声明了 SAMPLE BY 抽样表达式
- 虚拟字段 \_sample_factor 是采样系数
- 不采样
```sql
SELECT ... SAMPLE 0
-- 或
SELECT ... SAMPLE 1
```
- SAMPLE factorfactor 是采样因子,取值 0~1
```sql
SELECT ... SAMPLE 0.1
-- 或者
SELECT ... SAMPLE 1/10
```
- SAMPLE rows采样**近似**行数,必须大于 1
```sql
SELECT ... SAMPLE 10000
```
- SAMPLE factor OFFSET n偏移 n\*100% 的数据量后才开始按 factor 因子采样,取值都在 0~1
```sql
SELECT ... SAMPLE 0.4 OFFSET 0.5
```
# ARRAY JOIN
- 允许在数据表内部,与数组或嵌套字段进行 JOIN 操作,操作时把数组或嵌套字段拆成多行
- 支持 INNER 和 LEFT默认 INNER
```sql
SELECT ... FROM table_name ARRAY JOIN column_name AS alias_name
SELECT ... FROM table_name LEFT ARRAY JOIN column_name AS alias_name
```
# JOIN
## 连接精度
- ALL: 默认,左表的每行数据,在右表中有多行连接匹配,返回右表全部连接数据
- ANY: 左表的每行数据,在右表中有多行连接匹配,返回右表第一行连接数据
- ASOF: 增加模糊连接条件,对应字段必须是整数、浮点数和日期这类有序数据类型
```sql
SELECT ... FROM table_a ASOF INNER JOIN table_b USING(key_1, key_2)
-- key_1 字段是 join keykey_2 是模糊连接条件字段
```
## 连接类型
- INNER: 内连接,返回交集部分
- OUTER: 外链接
- LEFT: 左表数据全部返回,右表匹配则返回,不匹配则填充相应字段的默认值
- RIGHT: 与 LEFT 相反
- FULL: 先 LEFT右表剩下的数据再 RIGHT
- CROSS: 交叉连接,返回笛卡儿积
## JOIN 查询优化
- 左大右小,小表放右侧,右表会被加载到内存中
- JOIN 查询无缓存,应用可考虑实现查询缓存
- 大量维度属性补全时,建议使用字典表代替 JOIN 查询
- USING 语法简写
```sql
SELECT ... FROM table_1 INNTER JOIN table_2 USING key_1
```
# PREWHERE
- 只能用于 MergeTree 系列表引擎
- 与 WHERE 不同之处:
- 只读取 PREWHERE 指定的列字段,条件过滤
- 根据过滤好的数据再读取 SELECT 指定的列字段
- clickhouse 会在合适条件下自动把 WHERE 替换成 PREWHERE
# GROUP BY
- WITH ROLLUP按聚合键从右向左上卷数据基于聚合函数依次生成分组小计和总计
```sql
SELECT table, name, SUM(bytes_on_disk) FROM system.parts
GROUP BY table,name
WITH ROLLUP
ORDER BY table
```
- WITH CUBE基于聚合键之间的所有组合生成小计信息
```sql
SELECT ...
GROUP BY key1,key2,key3, ...
WITH CUBE
...
```
- WITH TOTALS常规聚合完成后增加一行对所有数据的汇总统计
```sql
SELECT ...
GROUP BY key1
WITH TOTALS
...
```
# HAVING
- 必须与 GROUP BY 配合使用,把聚合结果二次过滤
```sql
SELECT ... GROUP BY ... HAVING ...
```
# ORDER BY
- 默认 ASC(升序)
- NULLS LAST默认其他值 -> NaN -> NULL
- NULLS FIRSTNULL -> NaN -> 其他值
# LIMIT BY
- 返回指定分组的最多前 n 行数据
```sql
LIMIT n BY key1,key2 ...
```
- 支持 OFFSET
```sql
LIMIT n OFFSET m BY key1,key2 ...
-- 简写
LIMIT m,n BY key1,key2 ...
```
# LIMIT
- 返回指定的前 n 行数据
```sql
LIMIT n
LIMIT n OFFSET m
LIMIT m,n
```
- 推荐搭配 ORDER BY保证全局顺序
# SELECT
- 查询正则匹配的列字段
```sql
SELECT COLUMNS('^n'), COLUMNS('p') FROM system.databases
```
# DISTINCT
- 去重
- 先 DISTINCT 后 ORDER BY
# UNION ALL
- 联合左右两边的子查询,一并返回结果,可多次声明使用联合多组查询
```sql
SELECT c1, c2 FROM t1 UNION ALL SELECT c3, c4 FROM t2
```
- 两边列字段数量必须一样,类型兼容,查询结果列名以左侧为准
# SQL 执行计划
- 设置日志到 DEBUG 或 TRACE 级别,可查看 SQL 执行日志
- SQL 需真正执行后才有日志,如果查询量大,推荐 LIMIT
- **不要用 SELECT * 查询**
- 尽可能利用索引,避免全表扫描